EigenEvent: An algorithm for event detection from complex data streams in syndromic surveillance

نویسندگان

  • Hadi Fanaee-T
  • João Gama
چکیده

Syndromic surveillance systems continuously monitor multiple pre-diagnostic daily streams of indicators from different regions with the aim of early detection of disease outbreaks. The main objective of these systems is to detect outbreaks hours or days before the clinical and laboratory confirmation. The type of data that is being generated via these systems is usually multivariate and seasonal with spatial and temporal dimensions. The algorithm What’s Strange About Recent Events (WSARE) is the state-of-the-art method for such problems. It exhaustively searches for contrast sets in the multivariate data and signals an alarm when find statistically significant rules. This bottom-up approach presents a much lower detection delay comparing the existing top-down approaches. However, WSARE is very sensitive to the small-scale changes and subsequently comes with a relatively high rate of false alarms. We propose a new approach called EigenEvent that is neither fully top-down nor bottom-up. In this method, we instead of top-down or bottom-up search, track changes in data correlation structure via eigenspace techniques. This new methodology enables us to detect both overall changes (via eigenvalue) and dimension-level changes (via eigenvectors). Experimental results on hundred sets of benchmark data reveals that EigenEvent presents a better overall performance comparing state-of-the-art, in particular in terms of the false alarm rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Category-Specific Comparison of Univariate Alerting Methods for Biosurveillance Decision Support

Introduction Temporal alerting algorithms commonly used in syndromic surveillance systems are often adjusted for data features such as cyclic behavior but are subject to overfitting or misspecification errors when applied indiscriminately. In a project for the Armed Forces Health Surveillance Center to enable multivariate decision support, we obtained 4.5 years of outpatient, prescription and l...

متن کامل

Recursive least squares background prediction of univariate syndromic surveillance data

BACKGROUND Surveillance of univariate syndromic data as a means of potential indicator of developing public health conditions has been used extensively. This paper aims to improve the performance of detecting outbreaks by using a background forecasting algorithm based on the adaptive recursive least squares method combined with a novel treatment of the Day of the Week effect. METHODS Previous...

متن کامل

امکان‌سنجی استفاده از منابع داده‌های بالینی و غیربالینی در نظام مراقبت سندرومیک آنفلوانزا: به‌کارگیری رویکرد تجزیه‌وتحلیل همبستگی

Background and Objectives: Syndromic surveillance systems are used to early detection of outbreaks. The purpose of this study was to determine the feasibility of clinical and non-clinical data sources used in influenza syndromic surveillance in Zanjan. Methods: In this time series study, clinical and non-clinical data related to influenza like illness (ILI) as a potential data source of synd...

متن کامل

Value of evidence from syndromic surveillance with delayed reporting

Introduction Taking into account reporting delays in surveillance systems is not methodologically trivial. Consequently, most use the date of the reception of data, rather than the (often unknown) date of the health event itself. The main drawback of this approach is the resulting reduction in sensitivity and specificity1. Combining syndromic data from multiple data streams (most health events ...

متن کامل

Outbreak Prediction: Aggregating Evidence Through Multivariate Surveillance

Introduction Production animal health syndromic surveillance (PAHSyS) data are varied: there may be standardized ratios, proportions, counts of adverse events, categorical data and even qualitative ‘intelligence’ that may need to be aggregated up a hierarchy. PAHSyS provides some unique challenges for event detection. Livestock populations are made up of many subpopulations which are constantly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Intell. Data Anal.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2015